Citations

This page contains a list of works cited in the project. You may also be interested in the errata page where we collect errors we have encountered in the literature.

Looking for instructions on how to cite this site?

Works referenced

  • G. Abrams, J. Bell, and K. Rangaswamy. On prime nonprimitive von Neumann regular algebras. (2014)
  • D. D. Anderson and V. Camillo. Armendariz rings and Gaussian rings. Taylor \& Francis (1998)
  • F. W. Anderson and K. R. Fuller. Rings and categories of modules. Springer Science \& Business Media (2012)
  • D. D. Anderson and M. Zafrullah. The Schreier property and Gauss’ lemma. (2007)
  • V. Andrunakievic. Rings without nilpotent elements and completely simple ideals. (1968)
  • E. P. Armendariz and J. K. Park. Compressible matrix rings. Cambridge University Press (1984)
  • G. Baccella. Exchange property and the natural preorder between simple modules over semi-Artinian rings. Elsevier (2002)
  • H. Bass. Finitistic dimension and a homological generalization of semi-primary rings. (1960)
  • V. Bavula. The algebra of one-sided inverses of a polynomial algebra. Elsevier (2010)
  • S. K. Berberian. Baer rings and Baer∗-rings. (1988)
  • S. K. Berberian. The center of a corner of a ring. Elsevier (1981)
  • G. M. Bergman. A ring primitive on the right but not on the left. JSTOR (1964)
  • G. M. Bergman. Coproducts and some universal ring constructions. (1974)
  • G. M. Bergman. Some examples of non-compressible rings. Taylor \& Francis (1984)
  • A. K. Boyle. Hereditary 𝑄𝐼-rings. (1974)
  • W. Brandal. Almost maximal integral domains and finitely generated modules. (1973)
  • W. Brandal. Constructing Bézout domains. JSTOR (1976)
  • W. Brandal. On ℎ-local integral domains. (1975)
  • V. P. Camillo. Semihereditary polynomial rings. (1974)
  • V. Camillo and P. P. Nielsen. McCoy rings and zero-divisors. Elsevier (2008)
  • V. P. Camillo and H.-P. Yu. Exchange rings, units and idempotents. Taylor \& Francis (1994)
  • V. Camillo, F. Costa-Cano, and J. Simón. Relating properties of a ring and its ring of row and column finite matrices. Elsevier (2001)
  • V. P. Camillo, D. Khurana, T. Lam, W. Nicholson, and Y. Zhou. Continuous modules are clean. Elsevier (2006)
  • V. Camillo, W. Nicholson, and M. Yousif. Ikeda-Nakayama rings. Elsevier (2000)
  • M. Canfell. Completion of Diagrams by Automorphisms and Bass′ First Stable Range Condition. Elsevier (1995)
  • G. W. Chang. Some Characterizations of {K}rull domains. The Kangwon-Kyungki Mathematical Society (1999)
  • A. W. Chatters and C. R. Hajarnavis. Rings with chain conditions. Pitman Advanced Pub. Program (1980)
  • H. Chen and F. Li. Exchange rings having ideal-stable range one. Springer (2001)
  • P. L. Clark. Commutative Algebra. (2015)
  • J. Clark and P. Smith. On semi-Artinian modules and injectivity conditions. Cambridge University Press (1996)
  • J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer. Lifting modules: supplements and projectivity in module theory. Springer Science \& Business Media (2008)
  • P. M. Cohn. Bezout rings and their subrings. (1968)
  • P. M. Cohn. Free ideal rings. Academic Press (1964)
  • P. M. Cohn. Free ideal rings and localization in general rings. Cambridge University Press (2006)
  • P. M. Cohn. Some remarks on the invariant basis property. Elsevier (1966)
  • J. Commelin and R. Y. Lewis. Formalizing the ring of Witt vectors. (2021)
  • I. G. Connell. On the group ring. Cambridge University Press (1963)
  • J. H. Cozzens. Homological properties of the ring of differential polynomials. (1970)
  • J. H. Cozzens. Simple principal left ideal domains. Elsevier (1972)
  • R. F. Damiano. A right PCI ring is right Noetherian. (1979)
  • W. Dicks. Hereditary group rings. Oxford University Press (1979)
  • W. Dicks and A. Schofield. On semihereditary rings. Taylor \& Francis (1988)
  • A. J. Diesl, S. J. Dittmer, and P. P. Nielsen. Idempotent lifting and ring extensions. World Scientific (2016)
  • A. J. Diesl, C. Y. Hong, N. K. Kim, and P. P. Nielsen. Properties which do not pass to classical rings of quotients. Elsevier (2013)
  • J. Dieudonné and A. Grothendieck. Critères différentiels de régularité pour les localisés des algèbres analytiques. Academic Press (1967)
  • F. Dischinger and W. Müller. Left PF is not right PF. Taylor \& Francis (1986)
  • O. I. Domanov. A prime but not primitive regular ring. Russian Academy of Sciences, Steklov Mathematical Institute of Russian~… (1977)
  • N. V. Dung and P. F. Smith. On semi-artinian V-modules. Elsevier (1992)
  • D. Eisenbud. Commutative Algebra: with a view toward algebraic geometry. Springer Science \& Business Media (2013)
  • S. Elliger. On simple injective rings. (1973)
  • V. Erdoǧdu. Coprimely packed rings. Elsevier (1988)
  • A. Facchini. On the structure of torch rings. JSTOR (1983)
  • C. Faith. Algebra II Ring Theory: Vol. 2: Ring Theory. Springer Science \& Business Media (2012)
  • C. Faith. Lectures on injective modules and quotient rings. Springer (2006)
  • C. Faith. Rings and things and a fine array of twentieth century associative algebra. American Mathematical Soc. (2004)
  • C. Faith. Rings whose modules have maximal submodules. JSTOR (1995)
  • C. Faith. Rings with ascending condition on annihilators. Cambridge University Press (1966)
  • C. Faith. Self-injective rings. (1979)
  • C. Faith. Subrings of self-injective and FPF rings. Springer (1982)
  • C. Faith and P. Menal. A counter example to a conjecture of Johns. (1992)
  • C. Faith and S. Page. FPF Ring Theory: Faithful modules and generators of mod-R. Cambridge University Press (1984)
  • B. Fisher. Notes on Witt vectors: a motivated approach. (1999)
  • J. W. Fisher and R. L. Snider. Prime von Neumann regular rings and primitive group algebras. (1974)
  • E. Formanek and R. L. Snider. Primitive group rings. (1972)
  • R. M. Fossum. The divisor class group of a Krull domain. Springer Science \& Business Media (1973)
  • K. R. Fuller. Artinian Rings: A Supplement to Rings and Categories of Modules. Editum (1989)
  • D. Gill. Almost maximal valuation rings. Wiley Online Library (1971)
  • L. Gillman and M. Jerison. Rings of Continuous Functions. Springer New York (1960)
  • R. W. Gilmer. Integral domains which are almost Dedekind. JSTOR (1964)
  • R. W. Gilmer. Multiplicative ideal theory. M. Dekker (1972)
  • R. W. Gilmer. On prüfer rings. (1972)
  • R. W. Gilmer and W. Heinzer. Products of commutative rings and zero-dimensionality. (1992)
  • R. W. Gilmer and T. Parker. Divisibility properties in semigroup rings.. University of Michigan, Department of Mathematics (1974)
  • R. W. Gilmer and T. Parker. Semigroup rings as Prüfer rings. Duke University Press (1974)
  • R. W. Gilmer and others. On polynomial rings over a Hilbert ring.. The University of Michigan (1971)
  • Github. dart_data github issues. (2024)
  • S. Glaz. Commutative coherent rings. Springer (2006)
  • K. R. Goodearl. Ring theory: Nonsingular rings and modules. CRC Press (1976)
  • K. R. Goodearl. Simple self-injective rings need not be artinian. Taylor \& Francis (1974)
  • K. R. Goodearl. Von Neumann regular rings. Krieger Pub Co (1991)
  • K. R. Goodearl and R. B. W. Jr. An introduction to noncommutative Noetherian rings. Cambridge University Press (2004)
  • A. Grams. Atomic rings and the ascending chain condition for principal ideals. (1974)
  • C. Hajarnavis and N. Norton. On dual rings and their modules. Elsevier (1985)
  • J. Han and W. Nicholson. Extensions of clean rings. Taylor \& Francis (2001)
  • D. Handelman. Perspectivity and cancellation in regular rings. Elsevier (1977)
  • L. Heger. Krull dimension of the adele ring. (2024)
  • W. J. Heinzer and others. Polynomial rings over a Hilbert ring. (1984)
  • M. Henriksen. On the prime ideals of the ring of entire functions.. Pacific Journal of Mathematics (1953)
  • Y. Hirano. On annihilator ideals of a polynomial ring over a noncommutative ring. Elsevier (2002)
  • W. Hołubowski, M. Maciaszczyk, and S. Żurek. Note on Sus̆kevic̆’s problem on zero divisors. Taylor \& Francis (2017)
  • C. Huh, H. K. Kim, N. K. Kim, and Y. Lee. Basic examples and extensions of symmetric rings. Elsevier (2005)
  • C. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutative rings. Taylor \& Francis (2002)
  • H. C. Hutchins. Examples of commutative rings. Polygonal Pub House (1981)
  • S. U. Hwang, Y. C. Jeon, and Y. Lee. Structure and topological conditions of NI rings. Elsevier (2006)
  • N. A. Immormino. Clean rings & clean group rings. Bowling Green State University (2013)
  • M. C. Iovanov and A. Sistko. On the Toeplitz-Jacobson algebra and direct finiteness. (2016)
  • N. Jacobson. Basic algebra I. Courier Corporation (2012)
  • N. Jacobson. Basic algebra II. Courier Corporation (2012)
  • N. Jacobson. Structure of rings. American Mathematical Soc. (1956)
  • P. Jaffard. Les systèmes d'idéaux. Dunod (1960)
  • D. Jonah. Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals. Springer (1970)
  • I. Kaplansky. Commutative rings. University of Chicago Press Chicago (1974)
  • I. Kaplansky. Dual rings. JSTOR (1948)
  • I. Kaplansky. On the Dimension of Modules and Algebras, X: A Right Hereditary Ring which is not left Hereditary. Cambridge University Press (1958)
  • I. Kaplansky. Rings of operators. Benjamin (1968)
  • I. Kaplansky. Rings with a polynomial identity. (1948)
  • H. J. Keisler. Elementary calculus: An infinitesimal approach. Courier Corporation (2012)
  • J. W. Kerr. An example of a Goldie ring whose matrix ring is not Goldie. Academic Press (1979)
  • D. Khurana and T. Lam. Rings with internal cancellation. Elsevier (2005)
  • N. K. Kim and Y. Lee. Armendariz rings and reduced rings. Academic Press (2000)
  • A. A. Klein. A simple proof of a theorem on reduced rings. Cambridge University Press (1980)
  • M. T. Koşan. Extensions of rings having McCoy condition. Cambridge University Press (2009)
  • W. Krull. Allgemeine Bewertungstheorie. (1932)
  • T. Lam. A crash course on stable range, cancellation, substitution and exchange. World Scientific (2004)
  • T. Lam. A first course in noncommutative rings. Springer Science \& Business Media (2013)
  • T. Lam. Exercises in modules and rings. Springer Science \& Business Media (2007)
  • T. Lam. Lectures on modules and rings. Springer Science \& Business Media (2012)
  • T. Lam and A. S. Dugas. Quasi-duo rings and stable range descent. Elsevier (2005)
  • J. Lambek. Lectures on rings and modules. American Mathematical Soc. (2009)
  • M. D. Larsen and P. J. McCarthy. Multiplicative theory of ideals. Academic press (1971)
  • J. Lawrence. A countable self-injective ring is quasi-Frobenius. JSTOR (1977)
  • J. Lawrence. Erratum to:“A countable self-injective ring is quasi-Frobenius”(Proc. Amer. Math. Soc. 65 (1977), no. 2, 217--220). (1979)
  • T. Lee, Z. Yi, and Y. Zhou. An example of Bergman's and the extension problem for clean rings. Taylor \& Francis (2008)
  • L. Levy. Commutative rings whose homomorphic images are self-injective. Mathematical Sciences Publishers (1966)
  • H. Lombardi and C. Quitt\'e. Commutative algebra: Constructive methods: Finite projective modules. Springer (2015)
  • K. A. Loper. Almost Dedekind domains which are not Dedekind. Springer (2006)
  • S. R. Lopez-Permouth. Rings of Quotients. North Carolina State University (1985)
  • M. Lorenz. K0 of skew group rings and simple noetherian rings without idempotents. Oxford University Press (1985)
  • A. Malcev. On the immersion of an algebraic ring into a field. Springer (1937)
  • G. Marks. Duo rings and Ore extensions. Elsevier (2004)
  • G. Marks. On 2-primal Ore extensions. Taylor \& Francis (2001)
  • G. Marks. Reversible and symmetric rings. Elsevier (2002)
  • G. Marks. Skew polynomial rings over 2-primal rings. Taylor \& Francis (1999)
  • J. Marot. Une généralisation de la notion danneau de valuation. (1969)
  • E. Matlis. Rings of type I. Elsevier (1972)
  • E. Matlis and others. The minimal prime spectrum of a reduced ring. University of Illinois at Urbana-Champaign, Department of Mathematics (1983)
  • H. Matsumura. Commutative algebra. WA Benjamin (1970)
  • H. Matsumura. Commutative ring theory. Cambridge university press (1989)
  • J. C. McConnell, J. C. Robson, and L. W. Small. Noncommutative {N}oetherian rings. American Mathematical Soc. (2001)
  • N. H. McCoy. Remarks on divisors of zero. Taylor \& Francis (1942)
  • W. W. McGovern. Clean semiprime f-rings with bounded inversion. Taylor \& Francis (2003)
  • K. R. G. P. Menal and J. Moncasi. Free and residually Artinian regular rings. Academic Press (1993)
  • G. O. Michler and O. Villamayor. On rings whose simple modules are injective. Elsevier (1973)
  • A. V. Mikhalev and G. F. Pilz. The concise handbook of algebra. Springer Science \& Business Media (2013)
  • P. J. Morandi, B. A. Sethuraman, and J. Tignol. Division algebras with an anti-automorphism but with no involution. (2005)
  • W. Munn. Simple contracted semigroup algebras. (1978)
  • M. Nagata. Local rings. RE Krieger Pub. Co. (1962)
  • M. Nagata and others. An example of a normal local ring which is analytically reducible. Kyoto University (1958)
  • T. Nakayama. On Frobeniusean algebras. I. JSTOR (1939)
  • C. Nastasescu and N. Popescu. Anneaux semi-artiniens. (1968)
  • W. K. Nicholson. Lifting idempotents and exchange rings. (1977)
  • W. K. Nicholson. Semiregular modules and rings. Cambridge University Press (1976)
  • W. K. Nicholson. Strongly clean rings and Fitting's lemma. Taylor \& Francis (1999)
  • W. K. Nicholson. 𝐼-rings. (1975)
  • W. K. Nicholson and M. F. Yousif. Annihilators and the CS-condition. Cambridge University Press (1998)
  • W. K. Nicholson and M. F. Yousif. Principally injective rings. Elsevier (1995)
  • W. K. Nicholson and M. F. Yousif. Quasi-Frobenius Rings. Cambridge University Press (2003)
  • W. K. Nicholson and M. Yousif. On dual rings. (1999)
  • W. K. Nicholson and M. Yousif. Weakly continuous and C2-rings. Taylor \& Francis (2001)
  • W. Nicholson and M. Yousif. On perfect simple-injective rings. (1997)
  • W. K. Nicholson and Y. Zhou. Clean rings: a survey. World Scientific (2005)
  • W. Nicholson, J. Park, and M. Yousif. On simple-injective rings. (2002)
  • P. P. Nielsen. Semi-commutativity and the McCoy condition. Academic Press (2006)
  • P. P. Nielsen. Symmetry of unique generator property. (2022)
  • P. P. Nielsen and J. Ster. Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings. (2015)
  • J. Nishimura. A few examples of local rings, I. Duke University Press (2012)
  • N. C. Norton. Generalizations of the theory of quasi-frobenius rings. (1975)
  • K. C. O'Meara. The exchange property for row and column-finite matrix rings. Elsevier (2003)
  • O. Ore. Theory of non-commutative polynomials. JSTOR (1933)
  • B. L. Osofsky. A generalization of quasi-Frobenius rings. Elsevier (1966)
  • B. L. Osofsky. Rings all of whose finitely generated modules are injective. Mathematical Sciences Publishers (1964)
  • K. C. O’Meara. A new setting for constructing von Neumann regular rings. Taylor \& Francis (2017)
  • D. S. Passman. Observations on group rings. Taylor \& Francis (1977)
  • G. A. Pino, K. M. Rangaswamy, and M. S. Molina. Weakly regular and self-injective Leavitt path algebras over arbitrary graphs. Springer (2011)
  • G. Puninski. Projective modules over the endomorphism ring of a biuniform module. Elsevier (2004)
  • G. Puninski. Serial rings. Springer Science \& Business Media (2001)
  • Y. Quentel. Sur la compacité du spectre minimal d’un anneau. (1971)
  • J. Ram. On the semisimplicity of skew polynomial rings. (1984)
  • M. B. Rege, S. Chhawchharia, and others. Armendariz rings. The Japan Academy (1997)
  • M. Reid. Akizuki's counterexample. (1995)
  • G. Renault. Sur les anneaux de groupes. (1971)
  • F. Rohrer. Irreducibility and integrity of schemes. Elsevier (2015)
  • C. Rotthaus. Nicht ausgezeichnete, universell japanische Ringe. Springer (1977)
  • L. H. Rowen. Examples of semiperfect rings. Springer (1989)
  • L. Rowen. Ring Theory V1. Elsevier Science (1988)
  • E. A. Rutter and Jr. Rings with the principal extension property. Taylor \& Francis (1975)
  • P. Samuel. On unique factorization domains. Duke University Press (1961)
  • F. Sandomierski. Linearly compact modules and local Morita duality. Elsevier (1972)
  • O. F. G. Schilling. Ideal theory on open Riemann surfaces. (1946)
  • R. C. Schwiebert. Semi-Noetherian modules: epilogue. (2023)
  • J. C. Shepherdson. Inverses and zero divisors in matrix rings. Citeseer (1951)
  • T. S. Shores and R. Wiegand. Rings whose finitely generated modules are direct sums of cyclics. Academic Press (1974)
  • L. W. Small. Hereditary rings. National Acad Sciences (1966)
  • J. Soublin. Anneaux et modules cohérents. Academic Press (1970)
  • J. Ster. Corner rings of a clean ring need not be clean. Taylor \& Francis (2012)
  • J. Ster. Lifting units in clean rings. Elsevier (2013)
  • J. Ster. The clean property is not a Morita invariant. Elsevier (2014)
  • R. G. Swan. K-theory of coherent rings. (2019)
  • A. A. Tuganbaev. Left and right distributive rings. Springer (1995)
  • A. A. Tuganbaev. Rings close to regular. Springer Science \& Business Media (2013)
  • A. A. Tuganbaev. Semidistributive modules and rings. Springer Science \& Business Media (2012)
  • A. A. Tuganbaev. Semiregular, weakly regular, and π-regular rings. Springer (2002)
  • Y. Utumi. On continuous rings and self injective rings. JSTOR (1965)
  • K. Varadarajan. Hopfian and co-Hopfian objects. JSTOR (1992)
  • W. V. Vasconcelos. Finiteness in projective ideals. Elsevier (1973)
  • P. Vámos. The Decomposition of Finitely Generated Modules and Fractionally Self-Injective Rings. Wiley Online Library (1977)
  • R. Ware. Endomorphism rings of projective modules. (1971)
  • R. Warfield. Bezout rings and serial rings. Taylor \& Francis (1979)
  • R. Wisbauer. Foundations of module and ring theory. Routledge (2018)
  • H.-P. Yu. On quasi-duo rings. Cambridge University Press (1995)
  • A. Zalesskii and O. Neroslavskii. There exist simple Noetherian rings with zero divisors but without idempotents. MARCEL DEKKER INC 270 MADISON AVE, NEW YORK, NY 10016 (1977)
  • O. Zariski and P. Samuel. Commutative algebra. (1958)
  • D. Zelinsky. Linearly compact modules and rings. JSTOR (1953)
  • S. P. contributors. Stacks Project. (2018)
  • n. contributors. nLab. (2020)