Modules

(All modules are unital right modules.)

Name % Complete
$(x + (x,y)^2)$ over the ring $F_2[x,y]/(x,y)^2$
91.8%
$(x)/(x^2)$ over the ring $\mathbb R[x]/(x^2)$
93.4%
$\bigoplus_{i=0}^\infty k$ over the opposite ring of Michler & Villamayor's right-not-left V ring
78.7%
$\bigoplus_{i=1}^\infty F_2$ over the ring $\prod_{i=1}^\infty F_2$
70.5%
$\bigoplus_{i\in\mathbb N} \mathbb Z$ over the ring $\mathbb Z$: the ring of integers
80.3%
$\mathbb Q$ over the ring $\mathbb Z$: the ring of integers
86.9%
$\mathbb Q\times \frac{\mathbb Z}{p\mathbb Z}$, where $p$ is prime over the ring $\mathbb Z$: the ring of integers
67.2%
$\mathbb R[x_1,x_2,x_3,\ldots]$ over the ring $\mathbb R[x_1, x_2,x_3,\ldots]$
86.9%
$\mathbb Z$ over the ring $\mathbb Z$: the ring of integers
90.2%
$\mathbb Z\times \frac{\mathbb Z}{p\mathbb Z}$, $p$ prime over the ring $\mathbb Z$: the ring of integers
75.4%
$k^n$ over the ring $M_n(\mathbb Q)$
91.8%
$M_n(k)$ over the ring $M_n(\mathbb Q)$
96.7%
$p$-adic integers: $\mathbb Z_p$ over the ring $2$-adic integers: $\mathbb Z_2$
98.4%
$T_2(F_2)$ over the ring $T_n(F_2)$
95.1%
$Z(p^\infty)$: the Prüfer $p$ group over the ring $\mathbb Z$: the ring of integers
95.1%
A 2-generated faithful torsion module over the ring $F_2[x,y]/(x,y)^2$
82.0%
Finitely cogenerated, not Artinian over the ring Finitely cogenerated, not semilocal ring.
85.2%
Indecomposable, not uniform module over the ring $F_2[x,y]/(x,y)^2$
98.4%
Interval monoid ring (right regular module) over the ring Interval monoid ring
83.6%
Uniserial, not endolocal module over the ring 2-dimensional uniserial domain
59.0%