Works referenced

  • F. W. Anderson and K. R. Fuller. Rings and categories of modules. Springer Science \& Business Media (2012)
  • S. K. Berberian. Baer rings and Baer∗-rings. (1988)
  • S. K. Berberian. The center of a corner of a ring. Elsevier (1981)
  • G. M. Bergman. A ring primitive on the right but not on the left. JSTOR (1964)
  • G. M. Bergman. Some examples of non-compressible rings. Taylor \& Francis (1984)
  • V. Camillo and P. P. Nielsen. McCoy rings and zero-divisors. Elsevier (2008)
  • V. P. Camillo and H.-P. Yu. Exchange rings, units and idempotents. Taylor \& Francis (1994)
  • V. Camillo, W. Nicholson, and M. Yousif. Ikeda--Nakayama rings. Elsevier (2000)
  • A. W. Chatters and C. R. Hajarnavis. Rings with chain conditions. Pitman Advanced Pub. Program (1980)
  • H. Chen and F. Li. Exchange rings having ideal-stable range one. Springer (2001)
  • P. M. Cohn. Bezout rings and their subrings. (1968)
  • P. M. Cohn. Free ideal rings and localization in general rings. Cambridge University Press (2006)
  • P. M. Cohn. Some remarks on the invariant basis property. Elsevier (1966)
  • A. J. Diesl, C. Y. Hong, N. K. Kim, and P. P. Nielsen. Properties which do not pass to classical rings of quotients. Elsevier (2013)
  • V. Erdoǧdu. Coprimely packed rings. Elsevier (1988)
  • C. Faith. Lectures on injective modules and quotient rings. Springer (2006)
  • C. Faith. Subrings of self-injective and FPF rings. Springer (1982)
  • C. Faith and S. Page. FPF Ring Theory: Faithful modules and generators of mod-R. Cambridge University Press (1984)
  • K. R. Goodearl. Von Neumann regular rings. Krieger Pub Co (1991)
  • A. Grams. Atomic rings and the ascending chain condition for principal ideals. (1974)
  • C. Hajarnavis and N. Norton. On dual rings and their modules. Elsevier (1985)
  • J. Han and W. Nicholson. Extensions of clean rings. Taylor \& Francis (2001)
  • D. Handelman. Perspectivity and cancellation in regular rings. Elsevier (1977)
  • C. Huh, H. K. Kim, N. K. Kim, and Y. Lee. Basic examples and extensions of symmetric rings. Elsevier (2005)
  • S. U. Hwang, Y. C. Jeon, and Y. Lee. Structure and topological conditions of NI rings. Elsevier (2006)
  • N. A. Immormino. Clean rings \& clean group rings. Bowling Green State University (2013)
  • D. Jonah. Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals. Springer (1970)
  • I. Kaplansky. Commutative rings. University of Chicago Press Chicago (1974)
  • I. Kaplansky. Rings of operators. Benjamin (1968)
  • T.-Y. Lam. A first course in noncommutative rings. Springer Science \& Business Media (2013)
  • T.-Y. Lam. Exercises in modules and rings. Springer Science \& Business Media (2007)
  • T.-Y. Lam. Lectures on modules and rings. Springer Science \& Business Media (2012)
  • T.-K. Lee, Z. Yi, and Y. Zhou. An example of Bergman's and the extension problem for clean rings. Taylor \& Francis (2008)
  • A. Malcev. On the immersion of an algebraic ring into a field. Springer (1937)
  • G. Marks. Reversible and symmetric rings. Elsevier (2002)
  • W. W. McGovern. Clean semiprime f-rings with bounded inversion. Taylor \& Francis (2003)
  • T. Nakayama. On Frobeniusean algebras. I. JSTOR (1939)
  • W. K. Nicholson. Lifting idempotents and exchange rings. (1977)
  • W. K. Nicholson. 𝐼-rings. (1975)
  • W. K. Nicholson. Strongly clean rings and Fitting's lemma. Taylor \& Francis (1999)
  • W. K. Nicholson and M. F. Yousif. Quasi-Frobenius Rings. Cambridge University Press (2003)
  • W. K. Nicholson and M. Yousif. On dual rings. (1999)
  • P. P. Nielsen and J. Ster. Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings. (2015)
  • N. C. Norton. Generalizations of the theory of quasi-frobenius rings. (1975)
  • K. C. O’Meara. A new setting for constructing von Neumann regular rings. Taylor \& Francis (2017)
  • G. Puninski. Serial rings. Springer Science \& Business Media (2001)
  • J. Ster. Corner rings of a clean ring need not be clean. Taylor \& Francis (2012)
  • J. Ster. Lifting units in clean rings. Elsevier (2013)
  • J. Ster. The clean property is not a Morita invariant. Elsevier (2014)
  • A. A. Tuganbaev. Left and right distributive rings. Springer (1995)
  • A. A. Tuganbaev. Semidistributive modules and rings. Springer Science \& Business Media (2012)
  • A. A. Tuganbaev. Semiregular, weakly regular, and $\pi$-regular rings. Springer (2002)
  • K. Varadarajan. Hopfian and co-Hopfian objects. JSTOR (1992)
  • H.-P. Yu. On quasi-duo rings. Cambridge University Press (1995)