Citations

This page contains a list of works cited in the project. You may also be interested in the errata page where we collect errors we have encountered in the literature.

Looking for instructions on how to cite this site?

Works referenced

  • F. W. Anderson and K. R. Fuller. Rings and categories of modules. Springer Science \& Business Media (2012)
  • S. K. Berberian. Baer rings and Baer∗-rings. (1988)
  • S. K. Berberian. The center of a corner of a ring. Elsevier (1981)
  • G. M. Bergman. A ring primitive on the right but not on the left. JSTOR (1964)
  • G. M. Bergman. Some examples of non-compressible rings. Taylor \& Francis (1984)
  • W. Brandal. Constructing B\'ezout domains. JSTOR (1976)
  • V. Camillo and P. P. Nielsen. McCoy rings and zero-divisors. Elsevier (2008)
  • V. P. Camillo and H.-P. Yu. Exchange rings, units and idempotents. Taylor \& Francis (1994)
  • V. Camillo, W. Nicholson, and M. Yousif. Ikeda--Nakayama rings. Elsevier (2000)
  • A. W. Chatters and C. R. Hajarnavis. Rings with chain conditions. Pitman Advanced Pub. Program (1980)
  • H. Chen and F. Li. Exchange rings having ideal-stable range one. Springer (2001)
  • P. M. Cohn. Bezout rings and their subrings. (1968)
  • P. M. Cohn. Free ideal rings and localization in general rings. Cambridge University Press (2006)
  • P. M. Cohn. Some remarks on the invariant basis property. Elsevier (1966)
  • R. F. Damiano. A right PCI ring is right Noetherian. (1979)
  • A. J. Diesl, C. Y. Hong, N. K. Kim, and P. P. Nielsen. Properties which do not pass to classical rings of quotients. Elsevier (2013)
  • V. Erdoǧdu. Coprimely packed rings. Elsevier (1988)
  • C. C. Faith. Rings and things and a fine array of twentieth century associative algebra. American Mathematical Soc. (2004)
  • C. Faith. Lectures on injective modules and quotient rings. Springer (2006)
  • C. Faith. Subrings of self-injective and FPF rings. Springer (1982)
  • C. Faith and S. Page. FPF Ring Theory: Faithful modules and generators of mod-R. Cambridge University Press (1984)
  • R. M. Fossum. The divisor class group of a Krull domain. Springer Science \& Business Media (1973)
  • R. W. Gilmer. Multiplicative ideal theory. M. Dekker (1972)
  • R. Gilmer and others. On polynomial rings over a Hilbert ring.. The University of Michigan (1971)
  • S. Glaz. Commutative coherent rings. Springer (2006)
  • K. R. Goodearl. Von Neumann regular rings. Krieger Pub Co (1991)
  • A. Grams. Atomic rings and the ascending chain condition for principal ideals. (1974)
  • C. Hajarnavis and N. Norton. On dual rings and their modules. Elsevier (1985)
  • J. Han and W. Nicholson. Extensions of clean rings. Taylor \& Francis (2001)
  • D. Handelman. Perspectivity and cancellation in regular rings. Elsevier (1977)
  • W. J. Heinzer and others. Polynomial rings over a Hilbert ring. (1984)
  • M. Henriksen. On the prime ideals of the ring of entire functions.. Pacific Journal of Mathematics (1953)
  • C. Huh, H. K. Kim, N. K. Kim, and Y. Lee. Basic examples and extensions of symmetric rings. Elsevier (2005)
  • H. C. Hutchins. Examples of commutative rings. Polygonal Pub House (1981)
  • S. U. Hwang, Y. C. Jeon, and Y. Lee. Structure and topological conditions of NI rings. Elsevier (2006)
  • N. A. Immormino. Clean rings \& clean group rings. Bowling Green State University (2013)
  • N. Jacobson. Structure of rings. American Mathematical Soc. (1956)
  • D. Jonah. Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals. Springer (1970)
  • I. Kaplansky. Commutative rings. University of Chicago Press Chicago (1974)
  • I. Kaplansky. Rings of operators. Benjamin (1968)
  • H. J. Keisler. Elementary calculus: An infinitesimal approach. Courier Corporation (2012)
  • W. Krull. Allgemeine Bewertungstheorie. (1932)
  • T.-Y. Lam. A first course in noncommutative rings. Springer Science \& Business Media (2013)
  • T.-Y. Lam. Exercises in modules and rings. Springer Science \& Business Media (2007)
  • T.-Y. Lam. Lectures on modules and rings. Springer Science \& Business Media (2012)
  • J. Lawrence. A countable self-injective ring is quasi-Frobenius. JSTOR (1977)
  • J. Lawrence. Erratum to:“A countable self-injective ring is quasi-Frobenius”(Proc. Amer. Math. Soc. 65 (1977), no. 2, 217--220). (1979)
  • T.-K. Lee, Z. Yi, and Y. Zhou. An example of Bergman's and the extension problem for clean rings. Taylor \& Francis (2008)
  • A. Malcev. On the immersion of an algebraic ring into a field. Springer (1937)
  • G. Marks. Reversible and symmetric rings. Elsevier (2002)
  • H. Matsumura. Commutative algebra. WA Benjamin (1970)
  • H. Matsumura. Commutative ring theory. Cambridge university press (1989)
  • W. W. McGovern. Clean semiprime f-rings with bounded inversion. Taylor \& Francis (2003)
  • G. O. Michler and O. Villamayor. On rings whose simple modules are injective. Elsevier (1973)
  • M. Nagata. Local rings. RE Krieger Pub. Co. (1962)
  • T. Nakayama. On Frobeniusean algebras. I. JSTOR (1939)
  • W. K. Nicholson. Lifting idempotents and exchange rings. (1977)
  • W. K. Nicholson. 𝐼-rings. (1975)
  • W. K. Nicholson. Strongly clean rings and Fitting's lemma. Taylor \& Francis (1999)
  • W. K. Nicholson and M. F. Yousif. Quasi-Frobenius Rings. Cambridge University Press (2003)
  • W. K. Nicholson and M. Yousif. On dual rings. (1999)
  • P. P. Nielsen and J. Ster. Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings. (2015)
  • N. C. Norton. Generalizations of the theory of quasi-frobenius rings. (1975)
  • B. L. Osofsky. A generalization of quasi-Frobenius rings. Elsevier (1966)
  • B. L. Osofsky. Rings all of whose finitely generated modules are injective. Mathematical Sciences Publishers (1964)
  • K. C. O’Meara. A new setting for constructing von Neumann regular rings. Taylor \& Francis (2017)
  • G. Puninski. Serial rings. Springer Science \& Business Media (2001)
  • F. Rohrer. Irreducibility and integrity of schemes. Elsevier (2015)
  • O. F. G. Schilling. Ideal theory on open Riemann surfaces. (1946)
  • J.-P. Soublin. Anneaux et modules coh{\'e}rents. Academic Press (1970)
  • J. Ster. Corner rings of a clean ring need not be clean. Taylor \& Francis (2012)
  • J. Ster. Lifting units in clean rings. Elsevier (2013)
  • J. Ster. The clean property is not a Morita invariant. Elsevier (2014)
  • A. A. Tuganbaev. Left and right distributive rings. Springer (1995)
  • A. A. Tuganbaev. Rings close to regular. Springer Science \& Business Media (2013)
  • A. A. Tuganbaev. Semidistributive modules and rings. Springer Science \& Business Media (2012)
  • A. A. Tuganbaev. Semiregular, weakly regular, and $\pi$-regular rings. Springer (2002)
  • K. Varadarajan. Hopfian and co-Hopfian objects. JSTOR (1992)
  • H.-P. Yu. On quasi-duo rings. Cambridge University Press (1995)
  • O. Zariski and P. Samuel. Commutative algebra. (1958)