Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Search rings by keyword
Properties
All properties
Commutative ring properties
Theorems
Citations
Contribute
Learn
Login
Commutative rings
Name
% Complete
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
63.0%
Kasch not semilocal ring
78.0%
$\mathbb Z[x]/(x^2-1)$
65.0%
$\mathbb Z/(n)$, $n$ prime
88.0%
Integers: $\mathbb Z$
78.0%
$\mathbb Z/(n)$, $n$ a prime power
90.0%
Field of algebraic numbers
80.0%
Clark's uniserial ring
85.0%
Real numbers: $\mathbb R$
93.0%
$F[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
60.0%
$\Bbb Q[X,Y]_{(X,Y)}$
78.0%
$\mathbb R[x]/(x^2)$
90.0%
Finitely cogenerated, not semilocal ring.
80.0%
$\mathbb Z/(n)$, $n$ squarefree
90.0%
$k[[x^2,x^3]]$
72.0%
$k[[x]]$
82.0%
$F_p(x)$
80.0%
Semilocal not semiperfect ring
83.0%
Field of constructible numbers
87.0%
$\mathbb Z+x\mathbb Q[x]$
48.0%
Complex numbers: $\mathbb C$
98.0%
Grams' atomic domain which doesn't satisfy ACCP
45.0%
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
80.0%
Algebraic integers
72.0%
Integer polynomial ring: $\mathbb Z[x]$
77.0%
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
85.0%
Perfect nonArtinian ring
83.0%
Rational numbers: $\mathbb Q$
93.0%
uncountable Boolean ring
87.0%
Interval monoid ring
83.0%
$F_2[x,y]/(x,y)^2$
93.0%
Local Cohen-Macaulay domain which isn't regular
58.0%
Countably infinite boolean ring
87.0%
Polynomial ring over a field: $F[x]$
67.0%
ring of holomorphic functions on $\mathbb C$
72.0%