Commutative rings

Name % Complete
Algebraic integers
88.0%
Clark's uniserial ring
90.0%
Countably infinite boolean ring
77.0%
$F_2[x,y]/(x,y)^2$
89.0%
Field of algebraic numbers
99.0%
Field of constructible numbers
97.0%
field of $p$-adic numbers
98.0%
Finitely cogenerated, not semilocal ring.
81.0%
$F_p(x)$
98.0%
Grams' atomic domain which doesn't satisfy ACCP
68.0%
Interval monoid ring
92.0%
Kasch not semilocal ring
72.0%
$k[[x]]$
90.0%
$k[x]$
91.0%
$k[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
68.0%
$k[x_1, x_2,\ldots, x_n]$
77.0%
$k[x_1, x_2,x_3,\ldots]$
81.0%
$k[[x^2,x^3]]$
84.0%
$k[x,y]/(x^2, xy)$
63.0%
$k[x,y]/(x^2-y^3)$
80.0%
$k[x,y]_{(x,y)}/(x^2-y^3)$
69.0%
$\mathbb C$: the field of complex numbers
99.0%
$\mathbb F_2[x_1, x_2, x_3\ldots ]/(\{x_i^3\mid i\in \mathbb N\}\cup\{x_ix_j|i\neq j\}\cup\{x_i^2-m\mid i\in \mathbb N\})$
81.0%
$\mathbb Q$: the field of rational numbers
99.0%
$\mathbb Q[X,Y]_{(X,Y)}$
92.0%
$\mathbb R$: the field of real numbers
99.0%
$\mathbb R[x]/(x^2)$
98.0%
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
65.0%
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
85.0%
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
97.0%
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
80.0%
$\mathbb Z[i]$: the Gaussian integers
90.0%
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
89.0%
$\mathbb Z/(n)$, $n$ squarefree and not prime.
94.0%
$\mathbb Z_{(p)}$
95.0%
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
97.0%
$\mathbb Z/(p)$, $p$ prime
98.0%
$\mathbb Z[\sqrt{-5}]$
89.0%
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
96.0%
$\mathbb Z$: the ring of integers
98.0%
$\mathbb Z[x]$
89.0%
$\mathbb Z+x\mathbb Q[x]$
73.0%
$\mathbb Z[x]/(x^2-1)$
70.0%
McGovern's commutative Zorn ring that isn't clean
60.0%
$p$-adic integers: $\mathbb Z_p$
89.0%
Perfect non-Artinian ring
82.0%
Perfect ring that isn't semiprimary
73.0%
$\prod_{i=1}^\infty F_2$
77.0%
reduced exchange ring which is not semiregular
65.0%
reduced $I_0$ ring that is not exchange
64.0%
Ring of holomorphic functions on $\mathbb C$
88.0%