Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Search rings by keyword
Properties
All properties
Commutative ring properties
Theorems
Citations
Contribute
Learn
Login
Commutative rings
Name
% Complete
Kasch not semilocal ring
78.0%
$\mathbb Z/(p)$, $p$ prime
97.0%
Clark's uniserial ring
85.0%
Real numbers: $\mathbb R$
100.0%
$F[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
65.0%
$\Bbb Q[X,Y]_{(X,Y)}$
78.0%
$F_p(x)$
93.0%
Field of constructible numbers
97.0%
$\mathbb Z+x\mathbb Q[x]$
48.0%
$\mathbb Z[\sqrt{-5}]$
72.0%
Complex numbers: $\mathbb C$
100.0%
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
80.0%
Algebraic integers
72.0%
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
85.0%
Perfect non-Artinian ring
88.0%
uncountable Boolean ring
87.0%
Interval monoid ring
83.0%
$F_2[x,y]/(x,y)^2$
93.0%
Local Cohen-Macaulay domain which isn't regular
72.0%
Countably infinite boolean ring
87.0%
Gaussian integers: $\mathbb Z[i]$
73.0%
$\mathbb Z_{(p)}$
88.0%
ring of holomorphic functions on $\mathbb C$
72.0%
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
72.0%
$\mathbb Z[x]/(x^2-1)$
68.0%
Integers: $\mathbb Z$
85.0%
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
93.0%
Field of algebraic numbers
85.0%
$\mathbb R[x]/(x^2)$
90.0%
Finitely cogenerated, not semilocal ring.
80.0%
$\mathbb Z/(n)$, $n$ squarefree and not prime.
93.0%
$k[[x^2,x^3]]$
78.0%
$k[[x]]$
90.0%
Semilocal not semiperfect ring
90.0%
McGovern's commutative Zorn ring that isn't clean
73.0%
Grams' atomic domain which doesn't satisfy ACCP
57.0%
Integer polynomial ring: $\mathbb Z[x]$
77.0%
Local non-Ikeda-Nakayama ring
80.0%
Rational numbers: $\mathbb Q$
100.0%
Polynomial ring over a field: $F[x]$
77.0%