Rings

Name % Complete
Kasch not semilocal ring
68.0%
$\mathbb Z/(n)$, $n$ prime
100.0%
$M_n(F_q)$
100.0%
$T_2(F_2)$
89.0%
Chase's left-not-right semihereditary ring
57.0%
Clark's uniserial ring
97.0%
Real numbers: $\mathbb R$
100.0%
$F[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
64.0%
$\Bbb Q[X,Y]_{(X,Y)}$
92.0%
Šter's clean ring with non-clean corner rings
3.0%
$T_n(F)$: the upper triangular matrix ring over a field
89.0%
Varadarajan's left-not-right coHopfian ring
71.0%
$F_p(x)$
100.0%
Field of constructible numbers
100.0%
Non-Artinian simple ring
26.0%
$\mathbb Z+x\mathbb Q[x]$
73.0%
Full linear ring of a countable dimensional right vector space
87.0%
Algebra of differential operators on the line (1st Weyl algebra)
63.0%
Complex numbers: $\mathbb C$
100.0%
Right-not-left nonsingular ring
83.0%
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
78.0%
Algebraic integers
97.0%
right-not-left coherent ring
83.0%
Faith-Menal counterexample
34.0%
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
94.0%
Perfect non-Artinian ring
84.0%
Right-not-left Noetherian triangular ring
77.0%
uncountable Boolean ring
74.0%
Interval monoid ring
95.0%
$F_2[x,y]/(x,y)^2$
88.0%
Bergman's primitive finite uniform dimension ring
62.0%
Dedekind finite, not stably finite ring
64.0%
Local Cohen-Macaulay domain which isn't regular
77.0%
Countably infinite boolean ring
74.0%
Right-not-left Artinian triangular ring
68.0%
$\mathbb Z_{(p)}$
96.0%
Bass's right-not-left perfect ring
54.0%
ring of holomorphic functions on $\mathbb C$
97.0%
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
81.0%
$F_2[\mathbb Q_8]$
89.0%
$\mathbb Z[x]/(x^2-1)$
70.0%
$M_n(F)$: the matrix ring over a field
100.0%
Simple, non-Artinian, von Neumann regular ring
63.0%
Integers: $\mathbb Z$
97.0%
$\mathbb Z/(n)$, $n$ a prime power
100.0%
Non-symmetric $2$-primal ring
72.0%
local right-not-left Kasch ring
43.0%
Field of algebraic numbers
100.0%
Malcev's nonembeddable domain
55.0%
$T_n(F_q)$
89.0%
$\mathbb R[x]/(x^2)$
100.0%
Dieudonne's left-not-right Noetherian ring
62.0%
Finitely cogenerated, not semilocal ring.
85.0%
$\mathbb Z/(n)$, $n$ squarefree
100.0%
Reversible non-symmetric ring
64.0%
$k[[x^2,x^3]]$
92.0%
Bergman's exchange ring that isn't clean
44.0%
non-Artinian simple domain
62.0%
$k[[x]]$
96.0%
Semilocal not semiperfect ring
97.0%
McGovern's commutative Zorn ring that isn't clean
58.0%
left-not-right simple socle ring
91.0%
Grams' atomic domain which doesn't satisfy ACCP
73.0%
Integer polynomial ring: $\mathbb Z[x]$
95.0%
Local non-Ikeda-Nakayama ring
83.0%
Osofsky's $32$ element ring
89.0%
Rational numbers: $\mathbb Q$
100.0%
Left-not-right Noetherian domain
66.0%
right-not-left Kasch ring
67.0%
$\mathbb H$: Hamilton's quaternions
100.0%
Polynomial ring over a field: $F[x]$
81.0%