Definition: $R$ is a commutative domain with field of fractions $K$, and $K=R[u^{-1}]$ for some nonzero $u\in R$. Equivalently: $K$ is finitely generated as a ring over $R$; Equivalently: There is a nonzero $u\in R$ contained in all nonzero prime ideals of $R$

## Metaproperties

This property has the following metaproperties

This property

**does not** have the following metaproperties