Let $M$ be a monoid generated by $y$, $x_i$, $i\in \mathbb Z$ subject to the relations $yx_i=x_{i-1}$. The ring $R$ is the monoid ring $\mathbb Q[M]$.
Keywords semigroup ring
Name | Measure | |
---|---|---|
global dimension | left: | right: 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |