Let $S$ be the first Weyl algebra over $\mathbb Q$, and $M$ be a maximal right ideal of $S$. The required ring is the triangular ring $\begin{bmatrix}\mathbb Z &\frac{S}{M} \\ 0 & S\end{bmatrix}$
Keywords triangular ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ |
(Nothing was retrieved.)