Let $K$ and $M$ be splitting fields of $x^4+5x+5$ and $x^3-18x+18$ over $\mathbb Q$, and let $K=MF$. Then $Gal(M/F)$ is cyclic with a generator $\sigma$ with order 3. The cyclic algebra $D=(M/F,\sigma,11)$
Keywords cyclic algebra
Name | Measure | |
---|---|---|
global dimension | left: 0 | right: 0 |
Krull dimension (classical) | 0 | |
weak global dimension | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $R$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $R$ |
Units | $R\setminus\{0\}$ |
Zero divisors | $\{0\}$ |