Let $A$ be $R_{142}$ constructed using $\mathbb Q$. $A$ has a left ideal $L$ with projective dimension $1$. The desired ring is the triangular ring $R=\begin{bmatrix}A & A/L \\ 0 &\mathbb Q\end{bmatrix}$
Keywords triangular ring
Name | Measure | |
---|---|---|
global dimension | left: 3 | right: 1 |
Name | Description |
---|---|
Right singular ideal | $\{0\}$ |