Let $A$ be $R_{142}$. $A$ has a left ideal $L$ with projective dimension $1$. The desired ring is the triangular ring $R=\begin{bmatrix}A & A/L \\ 0 &\mathbb Q\end{bmatrix}$
Keywords triangular ring
| Name | Measure | |
|---|---|---|
| global dimension | left: 3 | right: 1 |
| Name | Description |
|---|---|
| Right singular ideal | $\{0\}$ |