Let $K$ be the unique cubic subextension of $\mathbb Q(\zeta_7)$. Let $\sigma$ be a generator of the Galois group (of order $3$) for $K/\mathbb Q$. Define the ring $R$ by adjoining an indeterminate $x$ to $K$ with the relations: $xkx^{-1}=\sigma k$ for all $k\in K$ and $x^3=2$. This is a central simple $\mathbb Q$ algebra with Brauer group of order $3$.
Notes: Central simple $\mathbb Q$ division algebra.
Keywords cyclic algebra
Name | Measure | |
---|---|---|
global dimension | left: 0 | right: 0 |
Krull dimension (classical) | 0 | |
weak global dimension | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $R$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $R$ |
Units | $R\setminus\{0\}$ |
Zero divisors | $\{0\}$ |