The direct limit of the matrix rings in the family $M_{2^n}(\mathbb Q)$ where the rings embed in each other as $A\mapsto \begin{bmatrix}A&0\\0&A\end{bmatrix}$
Keywords direct limit infinite matrix ring matrix ring
Name | Measure | |
---|---|---|
global dimension | left: 1 | right: 1 |
weak global dimension | 0 |
Name | Description |
---|---|
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |