Ring $R_{ 195 }$

Small's Noetherian, non-Ore ring

Description:

$R = \begin{bmatrix}\Bbb Z & \Bbb Z/(2) & \Bbb Z & \Bbb Z/(2) \\ 0 & \Bbb Z/(2) & 0 & \Bbb Z/(2) \\ 0 & 0 & \Bbb Z & 0 \\ 0 & 0 & 0 & \Bbb Z/(2) \end{bmatrix}$

Keywords matrix ring triangular ring

Reference(s):

  • L. W. Small. On some questions in Noetherian rings. (1966) @ Section 3
  • T. Lam. Lectures on modules and rings. (2012) @ p 354


Legend
  • = has the property
  • = does not have the property
  • = information not in database

(Nothing was retrieved.)

Name Description
Jacobson radical Subset of strictly upper triangular matrices
Left socle $\begin{bmatrix}0 & \Bbb Z/(2) & 0 & \Bbb Z/(2) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
Nilpotents Subset of strictly upper triangular matrices
prime radical Subset of strictly upper triangular matrices
Right socle $ \begin{bmatrix}0 & 0 & 0 & \Bbb Z/(2) \\ 0 & 0 & 0 & \Bbb Z/(2) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \Bbb Z/(2) \end{bmatrix}$