Let $F$ be the field of two elements, $S=F\langle x,y,z\rangle$ and $R=S /I$ where $I=(SxS)^2+(SyS)^2+(SzS)^2 + SxyzS + SyzxS + SzxyS$

Notes: $13$ dimensional $F$ algebra.

Keywords quotient ring

- G. Marks. Reversible and symmetric rings. (2002) @ Example 5 p 315

Symmetric properties

Asymmetric properties

Legend

- = has the property
- = does not have the property
- = information not in database

Name | Measure | |
---|---|---|

cardinality | 8192 | |

Krull dimension (classical) | 0 |

Name | Description |
---|---|

Idempotents | $\{0,1\}$ |