Group ring of the quaternion group $\mathcal Q_8$ with the field of two elements $F_2$.
Keywords group ring
Name | Measure | |
---|---|---|
cardinality | 256 | |
Krull dimension (classical) | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | Elements of "even weight" |
Left socle | $\{0, \sum_{g\in \mathcal Q_8}g\}$ |
Nilpotents | Elements of "even weight" |
Right socle | $\{0, \sum_{g\in \mathcal Q_8}g\}$ |
Unique maximal ideal | Elements of "even weight" |
Units | elements of "odd weight" |
Zero divisors | Elements of "even weight" |