Let $k$ be any simple ring of characteristic $0$, and let $d$ be a non-inner derivation on $k$. the differential polynomial ring $R=k[x;d]$.
Keywords differential polynomial ring
| Name | Measure | |
|---|---|---|
| composition length | left: $\infty$ | right: $\infty$ |
| Name | Description |
|---|---|
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |