Let $k$ be any simple ring of characteristic $0$, and let $d$ be a non-inner derivation on $k$. the differential polynomial ring $R=k[x;d]$.
Keywords differential polynomial ring
Name | Measure | |
---|---|---|
composition length | left: $\infty$ | right: $\infty$ |
Name | Description |
---|---|
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |