Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Ring $R_{ 31 }$
Bergman's primitive finite uniform dimension ring
Description:
See the
expanded details page
.
Expanded details page.
Keywords
semigroup ring
Reference(s):
A. W. Chatters and C. R. Hajarnavis. Rings with chain conditions. (1980) @ Bergman's example, pp 27-30
Properties
Dimensions
Subsets
Symmetric properties
Name
Abelian
anti-automorphic
Armendariz
compressible
countable
fully prime
fully semiprime
IC ring
involutive
NI ring
polynomial identity
simple
stable range 1
strongly connected
top simple
weakly clean
$\pi$-regular
$I_0$
2-primal
Baer
Boolean
clean
commutative
division ring
domain
exchange
field
finite
Frobenius
local
periodic
potent
primary
quasi-Frobenius
reduced
reversible
semi free ideal ring
semicommutative
semilocal
semiperfect
semiprimary
semiregular
semisimple
simple Artinian
strongly $\pi$-regular
strongly regular
symmetric
top regular
top simple Artinian
unit regular
von Neumann regular
Zorn
Dedekind finite
directly irreducible
IBN
lift/rad
nil radical
nilpotent radical
orthogonally finite
prime
semiprime
semiprimitive
stably finite
Asymmetric properties
left
Name
right
ACC principal
Bezout
cogenerator ring
coherent
cohopfian
CS
distributive
dual
FI-injective
finitely pseudo-Frobenius
Ikeda-Nakayama
Kasch
max ring
McCoy
nonzero socle
Ore ring
principally injective
quasi-continuous
quasi-duo
semi-Noetherian
simple socle
simple-injective
UGP ring
uniform
V ring
ACC annihilator
Artinian
Bezout domain
continuous
DCC annihilator
duo
essential socle
finitely cogenerated
free ideal ring
Goldie
hereditary
linearly compact
Noetherian
nonsingular
Ore domain
PCI ring
perfect
principal ideal domain
principal ideal ring
pseudo-Frobenius
Rickart
self-injective
semi-Artinian
semihereditary
serial
uniserial domain
uniserial ring
finite uniform dimension
finitely generated socle
primitive
T-nilpotent radical
Legend
= has the property
= does not have the property
= information not in database
Name
Measure
composition length
left: $\infty$
right: $\infty$
Name
Description
Jacobson radical
$\{0\}$