Let $k$ be a countably infinite field. Let $S$ be the power series ring over $k$ in two noncommuting variables $x,y$. The ring is $R=S/(y^2,yx)$
Keywords power series ring quotient ring
Name | Measure | |
---|---|---|
cardinality | $\mathfrak c$ | |
composition length | left: $\infty$ | right: $\infty$ |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $J(R)=(x,y)$ |
Left socle | $\{0\}$ |