Let $S$ be the subset of infinite matrices over $\mathbb Q$ which are nonzero only on finitely many entries above the diagonal. $R$ is the subring of the matrix ring generated by $S$ and the "infinite" identity matrix.
Keywords infinite matrix ring subring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $S$ |
Left socle | Elements of $S$ that are nonzero only on the top row. |
Nilpotents | $S$ |
prime radical | $S$ |
Right socle | $\{0\}$ |
Unique maximal ideal | $S$ |
Units | $R\setminus S$ |
Zero divisors | $S$ |