Let $T=R_{15}$ be the ring of linear transformations of a countable dimensional vector space over $\mathbb Q$. This is known to have exactly one nontrivial ideal $S$. The required ring is $R=T/S$
Name | Measure | |
---|---|---|
composition length | left: $\infty$ | right: $\infty$ |
weak global dimension | 0 |
Name | Description |
---|---|
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |