Let $F_2$ be the field of two elements, and consider the subring of matrices of the form $\begin{bmatrix}a&b&p&0&0&0\\c&d&q&0&0&0\\0&0&r&0&0&0\\0&0&0&r&s&t\\0&0&0&0&a&b\\0&0&0&0&c&d\end{bmatrix}$ with entries in $F_2$.
Notes: Jacobson radical is the subset with $a=b=c=d=r=0$.
Keywords matrix ring subring
| Name | Measure | |
|---|---|---|
| cardinality | 512 | |
| Krull dimension (classical) | 0 |
| Name | Description |
|---|---|
| Jacobson radical | The elements with $a=b=c=d=r=0$. |