$\left\{a+bi+cj+dk \in \mathbb{H} \mid a,b,c,d \in \mathbb{Z} \;\mbox{ or }\, a,b,c,d \in \mathbb{Z} + \tfrac{1}{2}\right\}$
Notes: Has a Euclidean division algorithm. Maximal order in the rational quaternions.
Keywords quaternion algebra subring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
global dimension | left: 1 | right: 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |