With real numbers $\mathbb R$, $\mathbb R[x]/(x^2+1)$ OR the set of real matrices of form $\left[\begin{smallmatrix}a&b\\-b&a\end{smallmatrix}\right]$ OR the real Clifford algebra for signature (-)
Keywords matrix ring quotient ring subring
| Name | Measure | |
|---|---|---|
| cardinality | $\mathfrak{c}$ | |
| composition length | left: 1 | right: 1 | 
| global dimension | left: 0 | right: 0 | 
| Krull dimension (classical) | 0 | |
| uniform dimension | left: 1 | right: 1 | 
| weak global dimension | 0 | 
| Name | Description | 
|---|---|
| Idempotents | $\{0,1\}$ | 
| Jacobson radical | $\{0\}$ | 
| Left singular ideal | $\{0\}$ | 
| Left socle | $R$ | 
| Nilpotents | $\{0\}$ | 
| Right singular ideal | $\{0\}$ | 
| Right socle | $R$ | 
| Units | $R\setminus\{0\}$ | 
| Zero divisors | $\{0\}$ |