Let $K$ and $M$ be splitting fields of $x^4+5x+5$ and $x^3-18x+18$ over $\mathbb Q$, and let $K=MF$. Then $Gal(M/F)$ is cyclic with a generator $\sigma$ with order 3. The cyclic algebra $D=(M/F,\sigma,11)$
Keywords cyclic algebra
| Name | Measure | |
|---|---|---|
| global dimension | left: 0 | right: 0 |
| Krull dimension (classical) | 0 | |
| weak global dimension | 0 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $R$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $R$ |
| Units | $R\setminus\{0\}$ |
| Zero divisors | $\{0\}$ |