Let $T$ be the localization $\mathbb Z[i]_{(2-i)}$. This is a subring of $\mathbb Q[i]$. Let $S$ be the skew power series $\mathbb Q[i][x;\sigma]$ where $\sigma$ is complex conjugation, so that $\alpha x=x\bar\alpha$. The ring $R$ is the subring of $S$ whose constant terms lie in $T$.
Keywords power series ring subring twisted (skew) polynomial ring
(Nothing was retrieved.)
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |