Let $K$ be the unique cubic subextension of $\mathbb Q(\zeta_7)$. Let $\sigma$ be a generator of the Galois group (of order $3$) for $K/\mathbb Q$. Define the ring $R$ by adjoining an indeterminate $x$ to $K$ with the relations: $xkx^{-1}=\sigma k$ for all $k\in K$ and $x^3=2$. This is a central simple $\mathbb Q$ algebra with Brauer group of order $3$.
Notes: Central simple $\mathbb Q$ division algebra.
Keywords cyclic algebra
| Name | Measure | |
|---|---|---|
| global dimension | left: 0 | right: 0 |
| Krull dimension (classical) | 0 | |
| weak global dimension | 0 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $R$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $R$ |
| Units | $R\setminus\{0\}$ |
| Zero divisors | $\{0\}$ |