Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Ring $R_{ 198 }$
$\mathbb H[X]$
Description:
Ring of polynomials over the quaternions
Keywords
polynomial ring
Reference(s):
(Citation needed)
Properties
Dimensions
Subsets
Symmetric properties
Name
anti-automorphic
fully prime
fully semiprime
involutive
polynomial identity
stable range 1
subdirectly irreducible
$\pi$-regular
$I_0$
Boolean
clean
commutative
countable
division ring
exchange
field
finite
Frobenius
local
periodic
potent
primary
quasi-Frobenius
semilocal
semiperfect
semiprimary
semiregular
semisimple
simple
simple Artinian
strongly $\pi$-regular
strongly regular
top regular
top simple
top simple Artinian
unit regular
von Neumann regular
weakly clean
Zorn
2-primal
Abelian
Armendariz
Baer
compressible
Dedekind finite
directly irreducible
domain
IBN
IC ring
lift/rad
NI ring
nil radical
nilpotent radical
orthogonally finite
prime
reduced
reversible
semi free ideal ring
semicommutative
semiprime
semiprimitive
stably finite
strongly connected
symmetric
Asymmetric properties
left
Name
right
distributive
duo
finitely pseudo-Frobenius
primitive
quasi-duo
Artinian
co-Hopfian
cogenerator ring
continuous
dual
essential socle
FI-injective
finitely cogenerated
Kasch
linearly compact
max ring
nonzero socle
PCI ring
perfect
principally injective
pseudo-Frobenius
self-injective
semi-Artinian
serial
simple socle
uniserial domain
uniserial ring
V ring
ACC annihilator
ACC principal
Bezout
Bezout domain
coherent
CS
DCC annihilator
finite uniform dimension
finitely generated socle
free ideal ring
Goldie
hereditary
Ikeda-Nakayama
McCoy
Noetherian
nonsingular
Ore domain
Ore ring
principal ideal domain
principal ideal ring
quasi-continuous
Rickart
semi-Noetherian
semihereditary
simple-injective
T-nilpotent radical
UGP ring
uniform
Legend
= has the property
= does not have the property
= information not in database
Name
Measure
global dimension
left: 1
right: 1
Name
Description
Idempotents
$\{0,1\}$
Jacobson radical
$\{0\}$
Left singular ideal
$\{0\}$
Left socle
$\{0\}$
Nilpotents
$\{0\}$
Right singular ideal
$\{0\}$
Right socle
$\{0\}$
Zero divisors
$\{0\}$