Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Ring $R_{ 199 }$
$M_2(\mathbb H[X])$
Description:
The ring of $2\times 2$ matrices over the ring $\mathbb H[X]$.
Keywords
matrix ring
polynomial ring
Reference(s):
D. Khurana and T. Lam. Rings with internal cancellation. (2005) @ Proposition 5.10 p 215
Properties
Dimensions
Subsets
Symmetric properties
Name
anti-automorphic
Baer
compressible
fully prime
fully semiprime
involutive
polynomial identity
stable range 1
subdirectly irreducible
$\pi$-regular
$I_0$
2-primal
Abelian
Armendariz
Boolean
clean
commutative
countable
division ring
domain
exchange
field
finite
Frobenius
local
NI ring
periodic
potent
primary
quasi-Frobenius
reduced
reversible
semi free ideal ring
semicommutative
semilocal
semiperfect
semiprimary
semiregular
semisimple
simple
simple Artinian
strongly $\pi$-regular
strongly connected
strongly regular
symmetric
top regular
top simple
top simple Artinian
unit regular
von Neumann regular
weakly clean
Zorn
Dedekind finite
directly irreducible
IBN
IC ring
lift/rad
nil radical
nilpotent radical
orthogonally finite
prime
semiprime
semiprimitive
stably finite
Asymmetric properties
left
Name
right
co-Hopfian
cogenerator ring
CS
finitely pseudo-Frobenius
Ikeda-Nakayama
Kasch
max ring
McCoy
nonzero socle
primitive
quasi-continuous
simple socle
simple-injective
UGP ring
Artinian
Bezout domain
continuous
distributive
dual
duo
essential socle
FI-injective
finitely cogenerated
free ideal ring
linearly compact
Ore domain
PCI ring
perfect
principal ideal domain
principally injective
pseudo-Frobenius
quasi-duo
self-injective
semi-Artinian
serial
uniform
uniserial domain
uniserial ring
V ring
ACC annihilator
ACC principal
Bezout
coherent
DCC annihilator
finite uniform dimension
finitely generated socle
Goldie
hereditary
Noetherian
nonsingular
Ore ring
principal ideal ring
Rickart
semi-Noetherian
semihereditary
T-nilpotent radical
Legend
= has the property
= does not have the property
= information not in database
Name
Measure
global dimension
left: 1
right: 1
Name
Description
Jacobson radical
$\{0\}$
Left singular ideal
$\{0\}$
Right singular ideal
$\{0\}$