Let $X=\{s,t,u,v,w,x,y,z\}$ be indeterminates. Let $R$ be the free algebra over $\mathbb Q$ and $X$ modulo relations which make the matrix equation $AB=I_2$ hold, where $A=\begin{bmatrix}s&t\\ u&v\end{bmatrix}$ and $B=\begin{bmatrix}w&x\\ y&z\end{bmatrix}$.
Keywords free algebra quotient ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |