The ring of integers $\mathbb Z=\{...-3, -2, -1, 0, 1, 2, 3,...\}$ OR equivalence relation on $\mathbb N\times \mathbb N$ given by $(a,b)\sim(c,d)$ iff $a-b=c-d$
Keywords equivalence relation
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
global dimension | left: 1 | right: 1 |
Krull dimension (classical) | 1 | |
weak global dimension | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Units | $\{-1, 1\}$ |
Zero divisors | $\{0\}$ |