Quotient ring of the integers $\mathbb Z$ by an ideal $(n)$ where $n=p^k$ for some prime number $p$, natural number $k>1$.
Keywords quotient ring
Name | Measure | |
---|---|---|
cardinality | $p^k$ | |
composition length | left: $k$ | right: $k$ |
Krull dimension (classical) | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $(p)/(p^k)$ |