For a sequence of non-negative integers $\{n_i\}$ such that $n_0 = 0$ and $n_r \ge 2 n_{r-1} + 2$, take a transcendental element $z_0 \in \Bbb Z_2$ of form $z_0 = \sum\limits_{r = 0}^\infty 2^{n_r}$. Set $z_{r + 1} = (z_r - 1) / (2^{n_{r+1} - \sum_{i=0}^r n_r})$. The ring is $\Bbb Z[2 (z_0 - 1), \{(z_i - 1)^2 | i = 0, 1, \ldots\}] \subset \Bbb Z_2$.
Notes: Details in https://arxiv.org/pdf/alg-geom/9503017.pdf
Keywords power series ring
| Name | Measure | |
|---|---|---|
| Krull dimension (classical) | 1 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |