Let $V$ be an infinite dimensional $\mathbb Q$-vector space, and consider the trivial extension $T(\mathbb Q,V)$.
Notes: Radical has square zero.
Keywords trivial extension
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |