Quotient of $\mathbb F_2[x_1, x_2, x_3\ldots ]$ such that $x_i^3=0$ for all $i$, $x_ix_j=0$ for $i\neq j$, and $x_i^2=m\neq 0$ for all $i$. $F_2$ denotes the field of two elements.
Keywords quotient ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |