Quotient ring of the integers $\mathbb Z$ by an ideal $(n)$ where $n$ is a squarefree number divisible by two primes.
Keywords quotient ring
| Name | Measure | |
|---|---|---|
| cardinality | $n$ | |
| composition length | left: $\Omega(n)$ | right: $\Omega(n)$ |
| global dimension | left: 0 | right: 0 |
| Krull dimension (classical) | 0 | |
| uniform dimension | left: $\Omega(n)$ | right: $\Omega(n)$ |
| weak global dimension | 0 |
| Name | Description |
|---|---|
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $R$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $R$ |
| Units | The cosets corresponding to integers coprime with $n$. |
| Zero divisors | Cosets corresponding to integers which are not coprime with $n$ |