Quotient ring of the integers $\mathbb Z$ by an ideal $(n)$ where $n$ is a squarefree number divisible by two primes.
Keywords quotient ring
Name | Measure | |
---|---|---|
cardinality | $n$ | |
composition length | left: $\Omega(n)$ | right: $\Omega(n)$ |
global dimension | left: 0 | right: 0 |
Krull dimension (classical) | 0 | |
uniform dimension | left: $\Omega(n)$ | right: $\Omega(n)$ |
weak global dimension | 0 |
Name | Description |
---|---|
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $R$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $R$ |
Units | The cosets corresponding to integers coprime with $n$. |
Zero divisors | Cosets corresponding to integers which are not coprime with $n$ |