Let $V=\oplus_{i=0}^\infty \mathbb Q$, and $S=\{(b,b,\ldots\mid b\in \mathbb Z\}$. Then $R$ is the subring of $\prod_{i=0}^\infty \mathbb Q$ generated by $V$ and $S$.
Keywords direct product subring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Name | Description |
---|---|
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |