Quotient ring of the integers $\mathbb Z$ by an ideal $(n)$ where $n=p^k$ for some prime number $p$, natural number $k>1$.
Keywords quotient ring
| Name | Measure | |
|---|---|---|
| cardinality | $p^k$ | |
| composition length | left: $k$ | right: $k$ |
| Krull dimension (classical) | 0 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Jacobson radical | $(p)/(p^k)$ |