Ring $R_{ 103 }$

Hochster's connected, nondomain, locally-domain ring

Description:

Let $L$ be the commutative semigroup with underlying set $\Bbb Q\times \Bbb N^{>0}$, where $(x,m)(y,n) = (x,m)$ when $x < y$, and $(x, m+n)$ if $x=y$. Adjoin a neutral element to $L$ and denote the resulting monoid by $M$. Then the ring is $R = \Bbb Q[M]$.

Keywords semigroup ring

Reference(s):

  • F. Rohrer. Irreducibility and integrity of schemes. (2015) @ Item 1.11 p 5


Known Properties
Name
almost maximal ring
arithmetical
Bezout
catenary
coherent
distributive
essential socle
finitely generated socle
finitely pseudo-Frobenius
J-0
J-1
J-2
Jacobson
Kasch
max ring
nonzero socle
normal
semi-Noetherian
simple socle
simple-injective
UGP ring
universally catenary
universally Japanese
$\pi$-regular
$h$-local domain
$I_0$
?-ring
ACC annihilator
ACC principal
algebraically closed field
almost Dedekind domain
almost maximal domain
almost maximal valuation ring
analytically normal
analytically unramified
Archimedean field
Artinian
atomic domain
Baer
Bezout domain
Boolean
characteristic 0 field
clean
cogenerator ring
Cohen-Macaulay
cohopfian
complete discrete valuation ring
complete local
continuous
CS
DCC annihilator
Dedekind domain
discrete valuation ring
division ring
domain
dual
Euclidean domain
Euclidean field
excellent
exchange
FGC
FI-injective
field
finite
finite uniform dimension
finitely cogenerated
free ideal ring
Frobenius
fully prime
fully semiprime
GCD domain
Goldie
Goldman domain
Gorenstein
Grothendieck
Henselian local
hereditary
Ikeda-Nakayama
Krull domain
linearly compact
local
local complete intersection
maximal ring
maximal valuation ring
Mori domain
N-1
N-2
Nagata
Noetherian
normal domain
ordered field
Ore domain
PCI ring
perfect
perfect field
periodic
potent
primary
prime
primitive
principal ideal domain
principal ideal ring
principally injective
Prufer domain
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-continuous
quasi-excellent
quasi-Frobenius
regular
regular local
Rickart
Schreier domain
self-injective
semi free ideal ring
semi-Artinian
semihereditary
semilocal
semiperfect
semiprimary
semiregular
semisimple
serial
simple
simple Artinian
stable range 1
strongly $\pi$-regular
strongly regular
top regular
top simple
top simple Artinian
torch
uniform
unique factorization domain
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
weakly clean
Zorn
2-primal
Abelian
anti-automorphic
Armendariz
commutative
compressible
countable
Dedekind finite
directly irreducible
duo
IBN
IC ring
involutive
lift/rad
McCoy
NI ring
nil radical
nilpotent radical
nonsingular
Ore ring
orthogonally finite
polynomial identity
quasi-duo
rad-nil
reduced
reversible
semicommutative
semiprime
semiprimitive
stably finite
strongly connected
symmetric
T-nilpotent radical
Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
Name Description
Idempotents $\{0,1\}$
Jacobson radical $\{0\}$
Left singular ideal $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Units $\mathbb Q$