Let $S=\prod_{i\in \mathbb N}\mathbb R$, and let $T$ be the ideal of sequences of finite support. Select a maximal ideal $M$ of $S$ containing $T$. The hyperreals can be realized as the quotient ring $R=S/T$.
Keywords direct product equivalence relation
Name | Measure | |
---|---|---|
cardinality | $\mathfrak{c}$ | |
global dimension | left: 0 | right: 0 |
Krull dimension (classical) | 0 | |
weak global dimension | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $R$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $R$ |
Units | $R\setminus\{0\}$ |
Zero divisors | $\{0\}$ |