Let $F$ be the algebraic closure of the field of two elements, and $F[t, \sigma]$ be the twisted polynomial ring with $\sigma$ is the automorphism $x\mapsto x^2$ on $F$. Finally, $R$ is the localization $F[t,\sigma]S^{-1}$ where $S$ is the set of nonnegative powers of $t$.
Notes: Has a unique simple right $R$ module (up to isomorphism)
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
global dimension | left: 1 | right: 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |