Let $\bar{\mathbb Q}$ be the algebraic closure of $\mathbb Q$ in $\mathbb C$.The required ring is $R=\bar{\mathbb Q}+X\mathbb C[[X]]$, a subring of the power series ring $\mathbb C[[X]]$.
Keywords algebraic closure power series ring subring
Name | Measure | |
---|---|---|
Krull dimension (classical) | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |