Ring $R_{ 123 }$

Mori but not Krull domain

Description:

Let $\bar{\mathbb Q}$ be the algebraic closure of $\mathbb Q$ in $\mathbb C$.The required ring is $R=\bar{\mathbb Q}+X\mathbb C[[X]]$, a subring of the power series ring $\mathbb C[[X]]$.

Keywords algebraic closure power series ring subring

Reference(s):

  • G. W. Chang. Some Characterizations of {K}rull domains. (1999) @ Example 7 p. 4


Known Properties
Name
$h$-local domain
$I_0$
almost Dedekind domain
almost maximal domain
almost maximal ring
analytically normal
analytically unramified
arithmetical
clean
Cohen-Macaulay
coherent
complete local
countable
distributive
excellent
exchange
finitely pseudo-Frobenius
Goldman domain
Gorenstein
Grothendieck
Henselian local
J-0
J-1
J-2
Jacobson
lift/rad
linearly compact
local
local complete intersection
max ring
maximal ring
N-2
Nagata
nil radical
nilpotent radical
Noetherian
potent
Prufer domain
quasi-excellent
rad-nil
regular
semi-Noetherian
semihereditary
semilocal
semiperfect
semiprimitive
semiregular
stable range 1
T-nilpotent radical
top regular
top simple
top simple Artinian
UGP ring
universally catenary
universally Japanese
weakly clean
Zorn
$\pi$-regular
?-ring
algebraically closed field
almost maximal valuation ring
Archimedean field
Artinian
Bezout
Bezout domain
Boolean
characteristic 0 field
cogenerator ring
cohopfian
complete discrete valuation ring
continuous
Dedekind domain
discrete valuation ring
division ring
dual
essential socle
Euclidean domain
Euclidean field
FGC
FI-injective
field
finite
finitely cogenerated
free ideal ring
Frobenius
fully prime
fully semiprime
GCD domain
hereditary
Kasch
Krull domain
maximal valuation ring
nonzero socle
ordered field
PCI ring
perfect
perfect field
periodic
primary
primitive
principal ideal domain
principal ideal ring
principally injective
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-Frobenius
regular local
Schreier domain
self-injective
semi free ideal ring
semi-Artinian
semiprimary
semisimple
serial
simple
simple Artinian
simple socle
strongly $\pi$-regular
strongly regular
torch
unique factorization domain
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
2-primal
Abelian
ACC annihilator
ACC principal
anti-automorphic
Armendariz
atomic domain
Baer
catenary
commutative
compressible
CS
DCC annihilator
Dedekind finite
directly irreducible
domain
duo
finite uniform dimension
finitely generated socle
Goldie
IBN
IC ring
Ikeda-Nakayama
involutive
McCoy
Mori domain
N-1
NI ring
nonsingular
normal
normal domain
Ore domain
Ore ring
orthogonally finite
polynomial identity
prime
quasi-continuous
quasi-duo
reduced
reversible
Rickart
semicommutative
semiprime
simple-injective
stably finite
strongly connected
symmetric
uniform
Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
Krull dimension (classical) 1
Name Description
Idempotents $\{0,1\}$
Left singular ideal $\{0\}$
Left socle $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Right socle $\{0\}$
Zero divisors $\{0\}$