Let $k$ be a field of characteristic $p>0$ such that $[k:k^p]=\infty$. Let $A=k[[x]]$. The required ring is the subring $R$ of elements of $A$ of elements of the form $\sum_0^\infty k_ix^i$ satisfying $[k^p(k_0, k_1,k_2,\ldots): k^p] <\infty$.
Keywords power series ring subring
Name | Measure | |
---|---|---|
global dimension | left: 1 | right: 1 |
Krull dimension (classical) | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |