Choose a prime$p$ and an infinite degree field extension$K$ of a characteristic $p$ field $k$ such that $K^{p}\subseteq k$. Let the discrete valuation ring $R$ be the ring of formal power series over $K$ whose coefficients generate a finite extension of $k$.
Keywords power series ring subring
Name | Measure | |
---|---|---|
global dimension | left: 1 | right: 1 |
Krull dimension (classical) | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |