$R=\mathbb Q[x,x^{-1}]$, or in other words, $\mathbb Q[x]$ localized at the set of powers of $x$
Keywords Laurent polynomials
Name | Measure | |
---|---|---|
global dimension | left: 1 | right: 1 |
Krull dimension (classical) | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |