$R=\mathbb Q[x,x^{-1}]$, or in other words, $\mathbb Q[x]$ localized at the set of powers of $x$
Keywords Laurent polynomials
| Name | Measure | |
|---|---|---|
| global dimension | left: 1 | right: 1 |
| Krull dimension (classical) | 1 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |