The direct limit of the system using the maps $\mathbb Q^n\to \mathbb Q^{2^n}$ given by $(v_0,\ldots v_n)\mapsto (v_1,\ldots v_n,v_1,\ldots v_n)$.
Keywords direct limit direct product
Name | Measure | |
---|---|---|
global dimension | left: 1 | right: 1 |
Krull dimension (classical) | 0 | |
weak global dimension | 0 |
Name | Description |
---|---|
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |