Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Ring $R_{ 194 }$
Principal ideal domain that is not Nagata
Description:
(to be added)
Reference(s):
R. C. Heitmann. A locally Nagata PID that is not Nagata. (2022) @ (main example)
Properties
Dimensions
Subsets
Known Properties
Name
$\pi$-regular
$h$-local domain
$I_0$
algebraically closed field
almost maximal domain
almost maximal ring
almost maximal valuation ring
analytically normal
analytically unramified
Archimedean field
Artinian
Boolean
characteristic 0 field
clean
cogenerator ring
cohopfian
complete discrete valuation ring
continuous
countable
discrete valuation ring
division ring
dual
essential socle
Euclidean domain
Euclidean field
exchange
FGC
FI-injective
field
finite
finitely cogenerated
Frobenius
fully prime
fully semiprime
Goldman domain
Henselian local
Jacobson
Kasch
lift/rad
linearly compact
local
local complete intersection
max ring
maximal ring
maximal valuation ring
N-2
nil radical
nilpotent radical
nonzero socle
ordered field
PCI ring
perfect
perfect field
periodic
potent
primary
primitive
principally injective
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-Frobenius
rad-nil
regular local
self-injective
semi-Artinian
semilocal
semiperfect
semiprimary
semiprimitive
semiregular
semisimple
serial
simple
simple Artinian
simple socle
simple-injective
stable range 1
strongly $\pi$-regular
strongly regular
T-nilpotent radical
top regular
top simple
top simple Artinian
UGP ring
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
weakly clean
Zorn
?-ring
complete local
excellent
J-2
Nagata
quasi-excellent
torch
universally Japanese
2-primal
Abelian
ACC annihilator
ACC principal
almost Dedekind domain
anti-automorphic
arithmetical
Armendariz
atomic domain
Baer
Bezout
Bezout domain
catenary
Cohen-Macaulay
coherent
commutative
compressible
CS
DCC annihilator
Dedekind domain
Dedekind finite
directly irreducible
distributive
domain
duo
finite uniform dimension
finitely generated socle
finitely pseudo-Frobenius
free ideal ring
GCD domain
Goldie
Gorenstein
Grothendieck
hereditary
IBN
IC ring
Ikeda-Nakayama
involutive
J-0
J-1
Krull domain
McCoy
Mori domain
N-1
NI ring
Noetherian
nonsingular
normal
normal domain
Ore domain
Ore ring
orthogonally finite
polynomial identity
prime
principal ideal domain
principal ideal ring
Prufer domain
quasi-continuous
quasi-duo
reduced
regular
reversible
Rickart
Schreier domain
semi free ideal ring
semi-Noetherian
semicommutative
semihereditary
semiprime
stably finite
strongly connected
symmetric
uniform
unique factorization domain
universally catenary
Legend
= has the property
= does not have the property
= information not in database
(Nothing was retrieved.)
Name
Description
Idempotents
$\{0,1\}$
Left singular ideal
$\{0\}$
Nilpotents
$\{0\}$
Right singular ideal
$\{0\}$
Zero divisors
$\{0\}$