Twisted polynomials $k[x;\sigma]$ for a countable division ring $k$ with endomorphism $\sigma$ which isn't an automorphism. The twist is given by $xa=\sigma(a)x$.
Keywords twisted (skew) polynomial ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
global dimension | left: 1 | right: |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |